Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 15(1): 3019, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589360

RESUMO

Catch bonds are a rare class of protein-protein interactions where the bond lifetime increases under an external pulling force. Here, we report how modification of anchor geometry generates catch bonding behavior for the mechanostable Dockerin G:Cohesin E (DocG:CohE) adhesion complex found on human gut bacteria. Using AFM single-molecule force spectroscopy in combination with bioorthogonal click chemistry, we mechanically dissociate the complex using five precisely controlled anchor geometries. When tension is applied between residue #13 on CohE and the N-terminus of DocG, the complex behaves as a two-state catch bond, while in all other tested pulling geometries, including the native configuration, it behaves as a slip bond. We use a kinetic Monte Carlo model with experimentally derived parameters to simulate rupture force and lifetime distributions, achieving strong agreement with experiments. Single-molecule FRET measurements further demonstrate that the complex does not exhibit dual binding mode behavior at equilibrium but unbinds along multiple pathways under force. Together, these results show how mechanical anisotropy and anchor point selection can be used to engineer artificial catch bonds.


Assuntos
Coesinas , Fenômenos Mecânicos , Humanos , Anisotropia , Cinética , Bactérias , Ligação Proteica
2.
Ital J Pediatr ; 50(1): 84, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650007

RESUMO

BACKGROUND: The COVID-19 pandemic have impacts on the prevalence of other pathogens and people's social lifestyle. This study aimed to compare the pathogen, allergen and micronutrient characteristics of pediatric inpatients with pneumonia prior to and during the COVID-19 pandemic in a large tertiary hospital in Shanghai, China. METHODS: Patients with pneumonia admitted to the Department of Pediatric Pulmonology of Xinhua Hospital between March-August 2019 and March-August 2020 were recruited. And clinical characteristics of the patients in 2019 were compared with those in 2020. RESULTS: Hospitalizations for pneumonia decreased by 74% after the COVID-19 pandemic. For pathogens, virus, mycoplasma pneumoniae (MP) and mixed infection rates were all much lower in 2020 than those in 2019 (P < 0.01). Regarding allergens, compared with 2019, the positive rates of house dust mite, shrimp and crab were significantly higher in 2020 (P < 0.01). And for micronutrients, the levels of vitamin B2, B6, C and 25-hydroxyvitamin D (25(OH)D) in 2020 were observed to be significantly lower than those in 2019 (P < 0.05). For all the study participants, longer hospital stay (OR = 1.521, P = 0.000), milk allergy (OR = 6.552, P = 0.033) and calcium (Ca) insufficiency (OR = 12.048, P = 0.019) were identified as high-risk factors for severe pneumonia by multivariate analysis. CONCLUSIONS: The number of children hospitalized with pneumonia and incidence of common pathogen infections were both reduced, and that allergy and micronutrient status in children were also changed after the outbreak of the COVID-19 pandemic.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Masculino , Feminino , Estudos Retrospectivos , Criança , China/epidemiologia , Pré-Escolar , Hospitalização/estatística & dados numéricos , Lactente , SARS-CoV-2 , Pneumonia/epidemiologia , Adolescente
3.
Gene ; 907: 148190, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38246579

RESUMO

OBJECTIVES: To describe the clinical characteristics of Chinese cystic fibrosis (CF) patients and to investigate the variants of CFTR and their potential pathogenicity. STUDY DESIGN: Chinese patients with potential CF diagnosis were studied. Clinical data were reviewed retrospectively from medical records. Whole exome sequencing and genetic evaluation were conducted to explore potential gene variants. The disruption of the variants to protein structure and function was explored and validated using in vitro experiments and in silico analysis. RESULTS: Four patients were recruited to the study, three of them were diagnosed as CF, and one was diagnosed as CFTR-related disorder. The age at symptom onset for the patients in this study ranged from newborn to 6 years, while the age at diagnosis varied from 3 to 11 years. All four patients exhibited bilateral diffuse bronchiectasis with Pseudomonas aeruginosa infections, and three of them had malnutrition. Finger clubbing was observed in three patients, two of whom displayed mixed ventilatory dysfunction. The CFTR variants spectrum of Chinese children with CF differs from that of Caucasian. A total of six variants were identified, two of which were first reported (c.1219G > T [p.Glu407*] and c.1367delT [p.Ala457Leufs*12]). The nonsense variants c.1219G > T, c.1657C > T and c.2551C > T and the frameshift variant c.1367delT were predicted to introduce premature stop codon and produce shorten CFTR protein, which was also first validated by in vitro truncation assay in this study. The missense variant c.1810A > C was predicted to disrupt the function of the nucleotide-binding domain 1 (NBD1) in the CFTR protein. The splicing variant c.1766 + 5G > T caused skipping of exon 13 and damaged the integrity of CFTR protein. CONCLUSIONS: Our study expands the spectrum of phenotypes and genotypes for CF of Chinese origin, which differs significantly from that of Caucasian. Genetic analysis and counseling are crucial and deserve extensive popularization for the diagnosis ofCF in patients of Chinese origin.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Criança , Recém-Nascido , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Fibrose Cística/diagnóstico , Estudos Retrospectivos , Mutação da Fase de Leitura , China , Mutação
4.
Nano Lett ; 23(22): 10406-10413, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37933959

RESUMO

We report the application of machine learning techniques to expedite classification and analysis of protein unfolding trajectories from force spectroscopy data. Using kernel methods, logistic regression, and triplet loss, we developed a workflow called Forced Unfolding and Supervised Iterative Online (FUSION) learning where a user classifies a small number of repeatable unfolding patterns encoded as images, and a machine is tasked with identifying similar images to classify the remaining data. We tested the workflow using two case studies on a multidomain XMod-Dockerin/Cohesin complex, validating the approach first using synthetic data generated with a Monte Carlo algorithm and then deploying the method on experimental atomic force spectroscopy data. FUSION efficiently separated traces that passed quality filters from unusable ones, classified curves with high accuracy, and identified unfolding pathways that were undetected by the user. This study demonstrates the potential of machine learning to accelerate data analysis and generate new insights in protein biophysics.


Assuntos
Fenômenos Mecânicos , Proteínas , Microscopia de Força Atômica/métodos , Proteínas/química , Aprendizado de Máquina , Análise Espectral
5.
Transl Pediatr ; 12(10): 1810-1822, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37969130

RESUMO

Background: Asthma is one of the most common chronic diseases affecting children's health, and recurrent wheezing in infants is closely related to childhood asthma. However, up to now, there is a lack of unified diagnostic criteria and interventions for recurrent wheezing in infants. By analyzing and discussing the risk factors of recurrent wheezing in infants and related intervention measures, we aim to take individualized treatment for different children and reduce the occurrence of recurrent wheezing in infants. Methods: From January 2017 to December 2020, children under 3 years old who were admitted to the Department of Pediatric Respiratory of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine with the chief complaint of wheezing for the first time and were clinically diagnosed with bronchiolitis, asthmatic bronchopneumonia and asthmatic bronchitis were retrospectively analyzed through telephone questionnaires. These children were divided into two groups based on whether the wheezing occurred again after discharge. The demographic characteristics, clinical treatment, imaging characteristics, and related interventions and outcomes after discharge were analyzed in both groups. Results: Among the 523 children under 3 years old who were hospitalized due to wheezing, 264 (50.5%) did not have wheezing after discharge, and 259 (49.5%) still had wheezing after discharge. Both chi-squared test and multivariate analysis showed that male, history of eczema, history of rhinitis, history of wheezing before hospitalization, family smoke exposure, mycoplasma infection and inhalation allergen sensitization were risk factors for recurrent wheezing in infants and young children (P<0.05). Simultaneously, Cox survival curve showed that different intervention time and intervention methods would lead to different prognosis. Conclusions: (I) Male, with a history of eczema, rhinitis, wheezing before hospitalization, family environment smoke exposure, mycoplasma infection and a history of inhalation allergy are high risk factors for recurrent wheezing in the recurrent wheezing group, and are more likely to have recurrent wheezing after discharge, with shorter days of wheezing control; (II) there was a significant interaction between mycoplasma infection and a history of inhalation allergy in infants with the risk of recurrent wheezing; (III) long-term intervention for children with wheezing for 4 weeks or more after discharge can reduce the probability of recurrent wheezing; (IV) for children of male, with a history of eczema or rhinitis, the most effective intervention to reduce the probability of recurrent wheezing is long-term inhaled corticosteroids (ICS) treatment after discharge.

6.
Angew Chem Int Ed Engl ; 62(32): e202304136, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285322

RESUMO

Single-molecule force spectroscopy (SMFS) is powerful for studying folding states and mechanical properties of proteins, however, it requires protein immobilization onto force-transducing probes such as cantilevers or microbeads. A common immobilization method relies on coupling lysine residues to carboxylated surfaces using 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS). Because proteins typically contain many lysine groups, this strategy results in a heterogeneous distribution of tether positions. Genetically encoded peptide tags (e.g., ybbR) provide alternative chemistries for achieving site-specific immobilization, but thus far a direct comparison of site-specific vs. lysine-based immobilization strategies to assess effects on the observed mechanical properties was lacking. Here, we compared lysine- vs. ybbR-based protein immobilization in SMFS assays using several model polyprotein systems. Our results show that lysine-based immobilization results in significant signal deterioration for monomeric streptavidin-biotin interactions, and loss of the ability to correctly classify unfolding pathways in a multipathway Cohesin-Dockerin system. We developed a mixed immobilization approach where a site-specifically tethered ligand was used to probe surface-bound proteins immobilized through lysine groups, and found partial recovery of specific signals. The mixed immobilization approach represents a viable alternative for mechanical assays on in vivo-derived samples or other proteins of interest where genetically encoded tags are not feasible.


Assuntos
Lisina , Peptídeos , Proteínas de Membrana , Fenômenos Mecânicos , Estreptavidina , Microscopia de Força Atômica/métodos
7.
JACS Au ; 2(6): 1417-1427, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35783175

RESUMO

The opportunistic pathogen Staphylococcus epidermidis utilizes a multidomain surface adhesin protein to bind host components and adhere to tissues. While it is known that the interaction between the SdrG receptor and its fibrinopeptide target (FgB) is exceptionally mechanostable (∼2 nN), the influence of downstream B domains (B1 and B2) is unclear. Here, we studied the mechanical relationships between folded B domains and the SdrG receptor bound to FgB. We used protein engineering, single-molecule force spectroscopy (SMFS) with an atomic force microscope (AFM), and Monte Carlo simulations to understand how the mechanical properties of folded sacrificial domains, in general, can be optimally tuned to match the stability of a receptor-ligand complex. Analogous to macroscopic suspension systems, sacrificial shock absorber domains should neither be too weak nor too strong to optimally dissipate mechanical energy. We built artificial molecular shock absorber systems based on the nanobody (VHH) scaffold and studied the competition between domain unfolding and receptor unbinding. We quantitatively determined the optimal stability of shock absorbers that maximizes work dissipation on average for a given receptor and found that natural sacrificial domains from pathogenic S. epidermidis and Clostridium perfringens adhesins exhibit stabilities at or near this optimum within a specific range of loading rates. These findings demonstrate how tuning the stability of sacrificial domains in adhesive polyproteins can be used to maximize mechanical work dissipation and serve as an adhesion strategy by bacteria.

8.
Biophys Rep (N Y) ; 2(1): None, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35284851

RESUMO

Here, we present a method based on yeast surface display that allows for direct comparison between population-level cell adhesion strength and single-molecule receptor-ligand rupture mechanics. We developed a high-throughput yeast adhesion assay in which yeasts displaying monomeric streptavidin (mSA) or enhanced mutant mSA were adhered to a biotinylated coverglass submerged in fluid. After exposure to shear stress (20-1000 dyn/cm2) by rapid spinning of the coverglass, cells were imaged to quantify the midpoint detachment shear stress for the cell population. We then performed atomic force microscope single-molecule force spectroscopy (SMFS) on purified mSA variants and identified correlations between single-molecule rupture force distributions and cell population adhesion strength. Several features of yeast display were important for successful correlations of adhesion strength to be drawn, including covalent attachment of the receptor to the cell wall, a precisely defined molecular pulling geometry, repression of nonspecific adhesion, and control for multivalency. With these factors properly taken into account, we show that spinning disk cell adhesion assays can be correlated with SMFS and are capable of screening the mechanical strength of receptor-ligand complexes. These workflow enhancements will accelerate research on mechanostable receptor-ligand complexes and receptor-mediated cell adhesion.

9.
Nano Lett ; 22(1): 179-187, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34918516

RESUMO

We used single-molecule AFM force spectroscopy (AFM-SMFS) in combination with click chemistry to mechanically dissociate anticalin, a non-antibody protein binding scaffold, from its target (CTLA-4), by pulling from eight different anchor residues. We found that pulling on the anticalin from residue 60 or 87 resulted in significantly higher rupture forces and a decrease in koff by 2-3 orders of magnitude over a force range of 50-200 pN. Five of the six internal anchor points gave rise to complexes significantly more stable than N- or C-terminal anchor points, rupturing at up to 250 pN at loading rates of 0.1-10 nN s-1. Anisotropic network modeling and molecular dynamics simulations helped to explain the geometric dependency of mechanostability. These results demonstrate that optimization of attachment residue position on therapeutic binding scaffolds can provide large improvements in binding strength, allowing for mechanical affinity maturation under shear stress without mutation of binding interface residues.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Antígeno CTLA-4 , Microscopia de Força Atômica/métodos , Ligação Proteica , Proteínas/química
10.
Trends Plant Sci ; 27(7): 699-716, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34906381

RESUMO

The agricultural sector must produce resilient and climate-smart crops to meet the increasing needs of global food production. Recent advancements in elucidating the mechanistic basis of plant stress memory have provided new opportunities for crop improvement. Stress memory-coordinated changes at the organismal, cellular, and various omics levels prepare plants to be more responsive to reoccurring stress within or across generation(s). The exposure to a primary stress, or stress priming, can also elicit a beneficial impact when encountering a secondary abiotic or biotic stress through the convergence of synergistic signalling pathways, referred to as cross-stress tolerance. 'Rewired plants' with stress memory provide a new means to stimulate adaptable stress responses, safeguard crop reproduction, and engineer climate-smart crops for the future.


Assuntos
Produtos Agrícolas , Estresse Fisiológico , Produtos Agrícolas/genética
11.
Allergy Asthma Clin Immunol ; 17(1): 69, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243801

RESUMO

BACKGROUND: IL13, IL4, IL4RA, FCER1B and ADRB2 are susceptible genes of asthma and atopy. Our previous study has found gene-gene interactions on asthma between these genes in Chinese Han children. Whether the interactions begin in fetal stage, and whether these genes interact with prenatal environment to enhance cord blood IgE (CBIgE) levels and then cause subsequent allergic diseases have yet to be determined. This study aimed to determine whether there are gene-gene and gene-environment interactions on CBIgE elevation among the aforementioned five genes and prenatal environmental factors in Chinese Han population. METHODS: 989 cord blood samples from a Chinese birth cohort were genotyped for nine single-nucleotide polymorphisms (SNPs) in the five genes, and measured for CBIgE levels. Prenatal environmental factors were collected using a questionnaire. Gene-gene and gene-environment interactions were analyzed with generalized multifactor dimensionality methods. RESULTS: A four-way gene-gene interaction model (IL13 rs20541, IL13 rs1800925, IL4 rs2243250 and ADRB2 rs1042713) was regarded as the optimal one for CBIgE elevation (testing balanced accuracy = 0.5805, P = 9.03 × 10-4). Among the four SNPs, only IL13 rs20541 was identified to have an independent effect on elevated CBIgE (odds ratio (OR) = 1.36, P = 3.57 × 10-3), while the other three had small but synergistic effects. Carriers of IL13 rs20541 TT, IL13 rs1800925 CT/TT, IL4 rs2243250 TT and ADRB2 rs1042713 AA were estimated to be at more than fourfold higher risk for CBIgE elevation (OR = 4.14, P = 2.69 × 10-2). Gene-environment interaction on elevated CBIgE was found between IL4 rs2243250 and maternal atopy (OR = 1.41, P = 2.65 × 10-2). CONCLUSIONS: Gene-gene interaction between IL13 rs20541, IL13 rs1800925, IL4 rs2243250 and ADRB2 rs1042713, and gene-environment interaction between IL4 rs2243250 and maternal atopy begin in prenatal stage to augment IgE production in Chinese Han children.

12.
BMC Pediatr ; 21(1): 263, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090369

RESUMO

BACKGROUND: Wheezing is common in younger children and often related to viral infection. It is lack of reliable indicators for asthma prediction. OBJECTIVE: To evaluate the relationship between circulation CD4+CCR6+CRTh2+ memory Th2 cells and asthma diagnosis in wheezing children. METHODS: A prospective study was performed in children under 5 years old presented with wheezing or at last one episode of documented wheezing history. After inclusion, the level of serum allergen-specific serum IgE (sIgE) and circulating CD4+CCR6+CRTh2+cells were detected. The patients' personal and family histories of allergic disease were acquired by questionnaire. The children were followed up over 2 years. Diagnosis of asthma was assessed at the end follow-up. The risk factors in predicting asthma diagnosis were evaluated. RESULTS: A total of 43 children completed follow-up. Higher wheezing frequency were found in children with asthma diagnosis. The mean of circulating CD4+CCR6+CRTh2+cells in children diagnosed with or without asthma was 1.6 %±0.8 and 0.8 %±0.6 %, respectively, and was significantly higher in children diagnosed with asthma (p < 0.01). There was no significant difference between children with and without allergic diseases history or family allergic diseases in level of circulating CD4+CCR6+CRTh2+ cells. Logistic regression analysis indicated that circulating CD4+CCR6+CRTh2+ cells (EXP, 8.986; 95 % CI,1.886-42.816) and wheezing frequency(EXP, 0.127; 95 % CI, 0.023-0.703)were high risk factors for asthma. CONCLUSIONS: Our exploratory study shown that circulating CD4+CCR6+CRTh2+ memory Th2 cells increased in asthma diagnosed children and it was a high-risk factor for asthma. Detection of this type of cells could be helpful in predicting the risk of asthma in wheezing children.


Assuntos
Asma , Sons Respiratórios , Asma/diagnóstico , Asma/etiologia , Linfócitos T CD4-Positivos , Criança , Pré-Escolar , Humanos , Projetos Piloto , Estudos Prospectivos , Receptores CCR6 , Sons Respiratórios/etiologia
13.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073862

RESUMO

Heat stress is a major limiting factor of grain yield and quality in crops. Abiotic stresses have a transgenerational impact and the mechanistic basis is associated with epigenetic regulation. The current study presents the first systematic analysis of the transgenerational effects of post-anthesis heat stress in tetraploid wheat. Leaf physiological traits, harvest components and grain quality traits were characterized under the impact of parental and progeny heat stress. The parental heat stress treatment had a positive influence on the offspring for traits including chlorophyll content, grain weight, grain number and grain total starch content. Integrated sequencing analysis of the small RNAome, mRNA transcriptome and degradome provided the first description of the molecular networks mediating heat stress adaptation under transgenerational influence. The expression profile of 1771 microRNAs (733 being novel) and 66,559 genes was provided, with differentially expressed microRNAs and genes characterized subject to the progeny treatment, parental treatment and tissue-type factors. Gene Ontology and KEGG pathway analysis of stress responsive microRNAs-mRNA modules provided further information on their functional roles in biological processes such as hormone homeostasis, signal transduction and protein stabilization. Our results provide new insights on the molecular basis of transgenerational heat stress adaptation, which can be used for improving thermo-tolerance in breeding.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico/genética , MicroRNAs/metabolismo , Transcriptoma/genética , Clorofila/análise , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Folhas de Planta/metabolismo , Estabilidade de RNA/genética , Sementes/metabolismo , Amido/análise , Tetraploidia , Triticum/genética , Regulação para Cima
14.
Plants (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919185

RESUMO

Stress events have transgenerational effects on plant growth and development. In Mediterranean regions, water-deficit and heat (WH) stress is a frequent issue that negatively affects crop yield and quality. Nitrogen (N) is an essential plant macronutrient and often a yield-limiting factor for crops. Here, the response of durum wheat seedlings to N starvation under the transgenerational effects of WH stress was investigated in two genotypes. Both genotypes showed a significant reduction in seedling height, leaf number, shoot and root weight (fresh and dry), primary root length, and chlorophyll content under N starvation stress. However, in the WH stress-tolerant genotype, the percentage reduction of most traits was lower in progeny from the stressed parents than progeny from the control parents. Small RNA sequencing identified 1534 microRNAs in different treatment groups. Differentially expressed microRNAs (DEMs) were characterized subject to N starvation, parental stress and genotype factors, with their target genes identified in silico. GO and KEGG enrichment analyses revealed the biological functions, associated with DEM-target modules in stress adaptation processes, that could contribute to the phenotypic differences observed between the two genotypes. The study provides the first evidence of the transgenerational effects of WH stress on the N starvation response in durum wheat.

15.
Scand J Immunol ; 94(1): e13040, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33759233

RESUMO

Cystic Fibrosis (CF) is primarily a progressive lung disease, characterized by chronic pulmonary infections with opportunistic pathogens. Such infections typically commence early in life, producing an inflammatory response marked by IL-8 chemokine production and neutrophilic infiltration, major contributory factors in CF progression. Studying this inflammation, especially early in life, is critical for developing new strategies for preventing or slowing disruption to the structural integrity of the CF airways. However, evaluating the immune responses of bronchoalveolar lavage (BAL) cells from children with CF faces technical challenges, including contamination carried from the lung due to pre-existing infections and low cell number availability. Here, we describe a technique for preparing BAL cells from young children with CF and using those cells in a bacterial stimulation assay. Initial antibiotic treatment proved essential for preventing resident bacteria from overgrowing BAL cell cultures, or non-specifically activating the cells. ACTB, identified as an optimal reference gene, was validated for accurate analysis of gene expression in these cells. Pseudomonas aeruginosa and Staphylococcus aureus were used as bacterial stimulants to evaluate the immune response of BAL cells from young children with CF. Addition of gentamicin prevented bacterial overgrowth, although if added after 3 hours of culture an extremely variable response resulted, with the bacteria causing a suppressive effect in some cultures. Addition of gentamicin after 1 hour of culture completely prevented this suppressive effect. This technique was then able to reproducibly measure the IL-8 response to stimulation with S. aureus and P. aeruginosa, including co-stimulation with both bacteria.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Fibrose Cística/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Lavagem Broncoalveolar/métodos , Líquido da Lavagem Broncoalveolar/microbiologia , Criança , Pré-Escolar , Fibrose Cística/microbiologia , Feminino , Humanos , Lactente , Inflamação/imunologia , Inflamação/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Infecções por Pseudomonas/microbiologia , Infecções Estafilocócicas/microbiologia
16.
Sci Rep ; 11(1): 3613, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574419

RESUMO

Water-deficit stress negatively affects wheat yield and quality. Abiotic stress on parental plants during reproduction may have transgenerational effects on progeny. Here we investigated the transgenerational influence of pre-anthesis water-deficit stress by detailed analysis of the yield components, grain quality traits, and physiological traits in durum wheat. Next-generation sequencing analysis profiled the small RNA-omics, mRNA transcriptomics, and mRNA degradomics in first generation progeny. Parental water-deficit stress had positive impacts on the progeny for traits including harvest index and protein content in the less stress-tolerant variety. Small RNA-seq identified 1739 conserved and 774 novel microRNAs (miRNAs). Transcriptome-seq characterised the expression of 66,559 genes while degradome-seq profiled the miRNA-guided mRNA cleavage dynamics. Differentially expressed miRNAs and genes were identified, with significant regulatory patterns subject to trans- and inter-generational stress. Integrated analysis using three omics platforms revealed significant biological interactions between stress-responsive miRNA and targets, with transgenerational stress tolerance potentially contributed via pathways such as hormone signalling and nutrient metabolism. Our study provides the first confirmation of the transgenerational effects of water-deficit stress in durum wheat. New insights gained at the molecular level indicate that key miRNA-mRNA modules are candidates for transgenerational stress improvement.


Assuntos
Pequeno RNA não Traduzido/genética , Estresse Fisiológico/fisiologia , Transcriptoma/genética , Triticum/genética , Desidratação/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Proteínas de Plantas/genética , RNA Mensageiro , Triticum/fisiologia
17.
BMC Immunol ; 22(1): 4, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407109

RESUMO

BACKGROUND: No reliable biological marker for the diagnosis of asthma in younger children is currently available. In this study, we analyzed the differences in basophil activation test (BAT) results among children with recurrent wheezing episodes who had different asthma outcomes. RESULTS: A prospective cohort study was conducted in children aged under 5 years who visited our pediatric respiratory clinic and ward for wheezing. After enrollment, the participants provided samples for a CD63-based BAT performed using an inhalant allergen mixture as a stimulant. Histories of personal allergic diseases and family allergic diseases were evaluated by using a questionnaire. All participants were followed up for 2 years, and their asthma outcomes were evaluated at the end of the follow-up period. The correlation between the BAT results and asthma outcomes was analyzed. Of the 45 originally enrolled children, 38 completed both the follow-up and a BAT. After stimulation with the inhalant mixture, the CD63 expression on basophils and the rate of positive CD63-based BAT results in children diagnosed with asthma were both significantly higher than those in children who were not diagnosed with asthma (p < 0.05 and p < 0.01, respectively). For the prediction of asthma, the positive predictive value and negative predictive value of CD63-based BAT was 71.8 and 69.2%, respectively. The positive likelihood ratio and negative likelihood ratio of CD63-based BAT were 1.70 and 0.3, respectively. CONCLUSIONS: Our pilot study indicates that CD63-based BAT has potential clinical value for predicting asthma outcome in young children with wheezing episodes.


Assuntos
Asma/diagnóstico , Basófilos/imunologia , Sons Respiratórios/diagnóstico , Alérgenos/imunologia , Asma/imunologia , Basófilos/metabolismo , Pré-Escolar , Feminino , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Masculino , Avaliação de Resultados da Assistência ao Paciente , Projetos Piloto , Valor Preditivo dos Testes , Estudos Prospectivos , Sons Respiratórios/imunologia , Tetraspanina 30/metabolismo
18.
Immun Inflamm Dis ; 9(1): 239-245, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277970

RESUMO

BACKGROUND: Our previous study has developed a four-gene model involving IL13 rs20541, IL4 rs2243250, ADRB2 rs1042713, and FCER1B rs569108 associated with asthma and atopy in Chinese Han children. However, whether the gene model is associated with allergies in early life has yet to be determined. This study aimed to apply the gene model in a birth cohort to investigate its associations with the development of allergic diseases in Chinese Han toddlers. METHODS: Five hundred and ninety-seven children from a birth cohort completing 2-year follow-up were included. Epidemiologic information and cord blood were collected. Children were genotyped for the above polymorphisms and divided into high or low genetic risk groups based on the genotypes. Subjects were followed at 6, 12, and 24 months, with information on allergic diseases collected via standard questionnaires and assessed by specialists. RESULTS: Two hundred and eighty-four children were divided into a high-risk group and 313 into a low-risk group. Between the two groups, a significant difference was only found in delivery mode among all the subject characteristics (p = .025). After stratification for delivery mode, children at high risk were more likely to develop eczema (relative risk [RR] = 1.46, p = .040) over 2 years of follow-up compared with those at low risk. No significant associations were found between genetic risk and food allergy, wheezing and allergic rhinitis (p > .05). CONCLUSION: The gene model was significantly associated with the development of eczema in Chinese Han toddlers. Long-term follow-up along with functional and replication studies on the gene model are still needed in future.


Assuntos
Asma , Eczema , Rinite Alérgica , Estudos de Coortes , Eczema/epidemiologia , Eczema/genética , Seguimentos , Humanos
19.
Nano Lett ; 20(12): 8940-8950, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33191756

RESUMO

We investigated the influence of fluorination on unfolding and unbinding reaction pathways of a mechanostable protein complex comprising the tandem dyad XModule-Dockerin bound to Cohesin. Using single-molecule atomic force spectroscopy, we mapped the energy landscapes governing the unfolding and unbinding reactions. We then used sense codon suppression to substitute trifluoroleucine in place of canonical leucine globally in XMod-Doc. Although TFL substitution thermally destabilized XMod-Doc, it had little effect on XMod-Doc:Coh binding affinity at equilibrium. When we mechanically dissociated global TFL-substituted XMod-Doc from Coh, we observed the emergence of a new unbinding pathway with a lower energy barrier. Counterintuitively, when fluorination was restricted to Doc, we observed mechano-stabilization of the non-fluorinated neighboring XMod domain. This suggests that intramolecular deformation is modulated by fluorination and highlights the differences between equilibrium thermostability and non-equilibrium mechanostability. Future work is poised to investigate fluorination as a means to modulate mechanical properties of synthetic proteins and hydrogels.


Assuntos
Halogenação , Nanotecnologia , Fenômenos Mecânicos , Microscopia de Força Atômica , Fenômenos Físicos , Imagem Individual de Molécula
20.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096606

RESUMO

Crop reproduction is highly sensitive to water deficit and heat stress. The molecular networks of stress adaptation and grain development in tetraploid wheat (Triticum turgidum durum) are not well understood. Small RNAs (sRNAs) are important epigenetic regulators connecting the transcriptional and post-transcriptional regulatory networks. This study presents the first multi-omics analysis of the sRNAome, transcriptome, and degradome in T. turgidum developing grains, under single and combined water deficit and heat stress. We identified 690 microRNAs (miRNAs), with 84 being novel, from 118 sRNA libraries. Complete profiles of differentially expressed miRNAs (DEMs) specific to genotypes, stress types, and different reproductive time-points are provided. The first degradome sequencing report for developing durum grains discovered a significant number of new target genes regulated by miRNAs post-transcriptionally. Transcriptome sequencing profiled 53,146 T. turgidum genes, swith differentially expressed genes (DEGs) enriched in functional categories such as nutrient metabolism, cellular differentiation, transport, reproductive development, and hormone transduction pathways. miRNA-mRNA networks that affect grain characteristics such as starch synthesis and protein metabolism were constructed on the basis of integrated analysis of the three omics. This study provides a substantial amount of novel information on the post-transcriptional networks in T. turgidum grains, which will facilitate innovations for breeding programs aiming to improve crop resilience and grain quality.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Proteínas de Plantas/genética , RNA de Plantas , Estresse Fisiológico/genética , Triticum/fisiologia , Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA